Read News Broadcasts of the day From All News Channels in USA , national news, sports, entertainment, finance, technology, and more from USA Today Broadcast

Wednesday, 24 May 2017

Lean-burn physiology gives Sherpas peak-performance

Nepalese Sherpas have a physiology that uses oxygen more efficiently than those used to the atmosphere at sea level.
This is the finding of a new study that investigated high-altitude adaptation in mountain populations.
The research involved taking muscle samples from mountaineers at 5,300m altitude and even putting them on an exercise bike at Mt Everest Base Camp.
The Sherpas owe this ability to an advantageous genetic mutation that gives them a unique metabolism.
It has long been a puzzle that Sherpas can cope with the low-oxygen atmosphere present high in the Himalayas far better than those visiting the region.
Mountaineers trekking to the area can adapt to the low oxygen by increasing the number of red cells in their blood, increasing its oxygen-carrying capacity.
In contrast, Sherpas actually have thinner blood, with less haemoglobin and a reduced capacity for oxygen (although this does have the advantage that the blood flows more easily and puts less strain on the heart).
"This shows that it's not how much oxygen you've got, it's what you do with it that counts," concludes Cambridge University’s Prof Andrew Murray, the senior author on the new study.
"Sherpas are extraordinary performers, especially on the high Himalayan peaks. So, there's something really unusual about their physiology," he told the BBC World Service's Science In Action programme.
Unravelling what is different involved a substantial scientific expedition to Everest Base Camp where the high-altitude response of 10 mostly European researchers and 15 elite Sherpas could be compared.
For participants like James Horscroft, whose PhD was based on the data he got from this Xtreme Everest 2 venture, this meant not just a chance to explore one of the planet’s most remote regions, but also a lot of pressure.
“It was very stressful, because we only had this one chance to get our data, high in the Himalaya."
For James, like all the others, those data included samples of muscle punctured from the thigh. While some samples were frozen to be taken back to university labs, others were experimented on in a makeshift lab at the base camp.
“We had to start at seven in the morning, because it took four hours to do all the tests on one sample," James said. "At that time, the temperature could be 10 degrees below freezing, so we'd be all wrapped up and wearing gloves. By late morning it would rise to plus-25, and we'd be taking all our kit off!"
Source By BBC.COM
Share:

Search This Blog

Blog Archive

Pages